Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int Arch Allergy Immunol ; 184(6): 529-538, 2023.
Article in English | MEDLINE | ID: covidwho-20238601

ABSTRACT

Since the global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a symptom of the onset of SARS-CoV-2, olfactory dysfunction (OD), has attracted tremendous attention. OD is not only a negative factor for quality of life but also an independent hazard and early biomarker for various diseases, such as Parkinson's and Huntington's diseases. Therefore, early identification and treatment of OD in patients are critical. Many etiological factors are responsible for OD based on current opinions. Sniffin'Sticks are recommended to identify the initial position (central or peripheral) for OD when treating patients clinically. It is worth emphasizing that the olfactory region in nasal cavity is recognized as the primary and critical olfactory receptor. Many nasal diseases, such as those with traumatic, obstructive and inflammatory causes, can lead to OD. The key question is no refined diagnosis or treatment strategy for nasogenic OD currently. This study summarizes the differences in medical history, symptoms, auxiliary examination, treatment and prognosis of different types of nasogenic OD by analyzing the current studies. We propose using olfactory training after 4-6 weeks of initial treatment for nasogenic OD patients with no significant improvement in olfaction. We hope that our research can provide valuable clinical guidance by systematically summarizing the clinical characteristics of nasogenic OD.


Subject(s)
Olfaction Disorders , Olfaction Disorders/diagnosis , Olfaction Disorders/therapy , Humans , Nasal Cavity , Prognosis , Inflammation
2.
J Med Virol ; 95(2): e28470, 2023 02.
Article in English | MEDLINE | ID: covidwho-2173232

ABSTRACT

Due to the COVID-19 pandemic, a series of sequelae, such as fatigue, tachypnea, and ageusia, appeared in long COVID patients, but the pathological basis was still uncertain. The targeted radiopharmaceuticals were of potential to systemically and dynamically trace the pathological changes. For the key ACE2 protein in the virus-host interaction, 68 Ga-cyc-DX600 was developed on the basis of DX600 as a PET tracer of ACE2 fluctuation and maintained the ability in differentiating ACE and ACE2. In the temporary infection model inhaled with the radio-traceable pseudovirus in the upper respiratory tract of male humanized ACE2 (hACE2) mice, organ-specific ACE2 dysfunction in acute period and the following ACE2 recovery in a relatively long period was visualized and quantified by ACE2 PET, revealing a complex pattern of virus concentration-dependent degree and time period-dependent tendency of ACE2 recovery, mainly a sudden decrease of apparent ACE2 in the heart, liver, kidneys, lungs, and so on, but the liver was of a quick functional compensation on ACE2 expression after a temporary decrease. ACE2 expression of most organs has recovered to a normal level at 15 days post inhalation, with brain and genitals still of a decreased SUVACE2 ;  meanwhile, kidneys were of an increased SUVACE2 . These findings on ACE2 PET were further verified by western blot. When compared with high-resolution computed tomography on structural changes and FDG PET on glycometabolism, ACE2 PET was superior in an earlier diagnostic window during infection and more comprehensive understanding of functional dysfunction post-infection. In the respective ACE2 PET/CT and ACE2 PET/MR scans of a volunteer, the repeatability of SUVACE2 and the ACE2 specificity were further confirmed. In conclusion, 68 Ga-cyc-DX600 was developed as an ACE2-specific tracer, and the corresponding ACE2 PET revealed the dynamic patterns of functional ACE2 recovery and provided a reference and approach to explore the ACE2-related pathological basis of sequelae in long COVID.


Subject(s)
COVID-19 , Male , Humans , Mice , Animals , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2 , Post-Acute COVID-19 Syndrome , Pandemics , Positron Emission Tomography Computed Tomography
4.
Financ Res Lett ; 47: 102624, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1559102

ABSTRACT

COVID-19 pandemic has affected almost all aspects of the global economy, especially commodity futures markets, due to the disruption risk of global supply chains from the pandemic lockdown. This paper extends ARMA-GARCH models to investigate the pandemic impact on both long-run and short-term volatilities of four major commodity futures. Model-fitting results reveal that the pandemic event has enhanced long-run volatilities for all futures returns, while the daily COVID-19 infection speed has mixed effects on short-term (instantaneous) volatilities. Our extended models and research findings are useful in global supply chain risk management, commodity options trading and regulators' supervision of inflation risk.

SELECTION OF CITATIONS
SEARCH DETAIL